Cosmologie: Du vide à l'énergie noire.

Alain Blanchard

Fleurance, 8 Août

Introduction

Cosmologie physique

Théorie des observations dans une métrique de RW Redshift et distances

Dynamique et Solutions

Vers les equations EFL Solutions

Principes simples +
Lois physiques

Principes simples

+

Lois physiques

Représentation cohérente

Principes simples

+

Lois physiques

- Représentation cohérente
- Prédictions

Principes simples

+

Lois physiques

- Représentation cohérente
- Prédictions
- Tests/validation par les observations

Principes simples

+

Lois physiques

- Représentation cohérente
- Prédictions
- Tests/validation par les observations

La Cosmologie est une science mature.

Ciel & Espace, Mai 2013, page 7

"L'univers est homogène aux grandes échelles"

Principe cosmologique d'Einstein

"L'univers est homogène aux grandes échelles"
Principe cosmologique d'Einstein
Peut (et doit) être testé par les observations.

"L'univers est homogène aux grandes échelles"

Principe cosmologique d'Einstein

Peut (et doit) être testé par les observations.

$$\lim_{R\to\infty}\overline{\rho}(R)=\mathit{cste}$$

(necéssaire mais pas suffisant...)

"L'univers est homogène aux grandes échelles"

Principe cosmologique d'Einstein

Peut (et doit) être testé par les observations.

$$\lim_{R\to\infty}\overline{\rho}(R)=cste$$

(necéssaire mais pas suffisant...) Isotropie

+ Principe de Copernic ⇒ homogénéité

▶ Un évènement est spécifié par quatre coordonnées (x, y, z, t)

- ▶ Un évènement est spécifié par quatre coordonnées (x, y, z, t)
- Ceci ne préjuge pas de la "forme" locale et globale de l'espace : Plan ? Sphère ? Tore ?

- ▶ Un évènement est spécifié par quatre coordonnées (x, y, z, t)
- Ceci ne préjuge pas de la "forme" locale et globale de l'espace : Plan ? Sphère ? Tore ?

Espace 3D Sphérique : partons d'un espace 4D (x, y, z, u)

$$x^2 + y^2 + z^2 + u^2 = R^2$$

- ▶ Un évènement est spécifié par quatre coordonnées (x, y, z, t)
- Ceci ne préjuge pas de la "forme" locale et globale de l'espace : Plan ? Sphère ? Tore ?

Espace 3D Sphérique : partons d'un espace 4D (x, y, z, u)

$$x^2 + y^2 + z^2 + u^2 = R^2$$

en coordonnées sphériques $r^2=x^2+y^2+z^2$ En partant de $dl^2=dx^2+dy^2+dz^2+du^2$ et avec $u^2=R^2-r^2$ on obtient :

- ▶ Un évènement est spécifié par quatre coordonnées (x, y, z, t)
- Ceci ne préjuge pas de la "forme" locale et globale de l'espace : Plan ? Sphère ? Tore ?

Espace 3D Sphérique : partons d'un espace 4D (x, y, z, u)

$$x^2 + y^2 + z^2 + u^2 = R^2$$

en coordonnées sphériques $r^2 = x^2 + y^2 + z^2$ En partant de $dl^2 = dx^2 + dy^2 + dz^2 + du^2$ et avec $u^2 = R^2 - r^2$ on obtient :

$$dl^2 = r^2 (d\theta^2 + \sin^2 \theta d\phi^2) + \frac{dr^2}{1 - (\frac{r}{R})^2}$$

$$dl^2 = r^2 (d\theta^2 + \sin^2 \theta d\phi^2) + \frac{dr^2}{1 - (\frac{r}{R})^2}$$
(sphérique)
 $+ dr^2$ (plat)
 $+ \frac{dr^2}{1 + (\frac{r}{R})^2}$ (hyperbolique)

$$\begin{split} dl^2 &= r^2 \big(d\theta^2 + \sin^2 \theta \, d\phi^2 \big) &+ \frac{dr^2}{1 - \left(\frac{r}{R}\right)^2} \; \text{(sphérique)} \\ &+ dr^2 \; \text{(plat)} \\ &+ \frac{dr^2}{1 + \left(\frac{r}{R}\right)^2} \; \text{(hyperbolique)} \end{split}$$

Elément de métrique de Robertson-Walker : $r
ightarrow rac{r}{R}$

$$\begin{split} dl^2 &= r^2 \big(d\theta^2 + \sin^2 \theta d\phi^2 \big) &+ \frac{dr^2}{1 - \left(\frac{r}{R} \right)^2} \text{ (sphérique)} \\ &+ dr^2 \text{ (plat)} \\ &+ \frac{dr^2}{1 + \left(\frac{r}{R} \right)^2} \text{ (hyperbolique)} \end{split}$$

Elément de métrique de Robertson-Walker : $r
ightarrow rac{r}{R}$

$$ds^{2} = -c^{2}dt^{2} + R(t)^{2}[r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \frac{dr^{2}}{1 - kr^{2}}]$$

avec k = -1, 0, +1 selon la géometrie.

Métrique

Métrique

Métrique de Robertson-Walker : $r = rR_0$

$$ds^2 = -c^2 dt^2 + a(t)^2 [r^2 (d\theta^2 + \sin^2 \theta d\phi^2) + \frac{dr^2}{1 - Kr^2}]$$

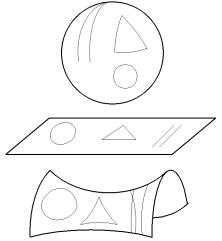
avec
$$K = \frac{k}{R_0^2}$$
 et $a(t_0) = 1$.

Géométries

Trois géométries (locales) possibles:

Géométries

Trois géométries (locales) possibles:



Topologie

La géométrie locale de l'espace (selon la valeur de k) ne détermine pas sa structure globale, c'est-à-dire sa topologie.

Topologie

La géométrie locale de l'espace (selon la valeur de k) ne détermine pas sa structure globale, c'est-à-dire sa topologie.

-> L'univers (homogène) est toujours fini avec k = +1.

Topologie

La géométrie locale de l'espace (selon la valeur de k) ne détermine pas sa structure globale, c'est-à-dire sa topologie.

- -> L'univers (homogène) est toujours fini avec k = +1.
- -> L'univers peut être fini ou infini si k = 0, -1.

Trajectoires des photons = géodésiques nulles:

Trajectoires des photons = géodésiques nulles:

$$ds^2 = 0$$

Trajectoires des photons = géodésiques nulles:

$$ds^2 = 0$$

Observateur à $(r=0,\theta,\phi,t=t_0)$ Source lumineusee à $(r_{\rm S},\theta=0,\phi=0,t_{\rm S})$ r(t) est la trajectoire du photon émis.

Trajectoires des photons = géodésiques nulles:

$$ds^2 = 0$$

Observateur à $(r = 0, \theta, \phi, t = t_0)$

Source lumineusee à $(r_S, \theta = 0, \phi = 0, t_S)$

r(t) est la trajectoire du photon émis. Cette trajectoire est une géodésique nulle donc :

$$c^2 dt^2 - R^2(t) \frac{dr^2}{1 - kr^2} = 0$$

i.e.

Trajectoires des photons = géodésiques nulles:

$$ds^2 = 0$$

Observateur à $(r = 0, \theta, \phi, t = t_0)$

Source lumineusee à $(r_S, \theta = 0, \phi = 0, t_S)$

r(t) est la trajectoire du photon émis. Cette trajectoire est une géodésique nulle donc :

$$c^2 dt^2 - R^2(t) \frac{dr^2}{1 - kr^2} = 0$$

i.e.

$$\frac{cdt}{R(t)} = \frac{dr}{\sqrt{1 - kr^2}}$$

Relation de Mattig relation Généralisée

relation $r_S - t_S$

Relation de Mattig relation Généralisée

relation $r_S - t_S$

$$\int_{t_{\rm S}}^{t_0} \frac{cdt}{R(t)} = \int_0^{r_{\rm S}} \frac{dr}{(1 - kr^2)^{1/2}} = S_k^{-1}(r_{\rm S})$$

avec:

$$S_k(r_S) = \begin{cases} \sin(r_S) & \text{si } k = +1 \\ r_S & \text{si } k = 0 \\ \sinh(r_S) & \text{si } k = -1 \end{cases}$$

Relation de Mattig relation Généralisée

relation $r_S - t_S$

$$\int_{t_{\rm S}}^{t_0} \frac{cdt}{R(t)} = \int_0^{r_{\rm S}} \frac{dr}{(1 - kr^2)^{1/2}} = S_k^{-1}(r_{\rm S})$$

avec:

$$S_k(r_S) = \begin{cases} \sin(r_S) & \text{si } k = +1 \\ r_S & \text{si } k = 0 \\ \sinh(r_S) & \text{si } k = -1 \end{cases}$$

Quand les distances sont petites devant R_0 on a :

$$S_k^{-1}(r) \sim r \text{ and } t.d.g. \sim \frac{c\delta t}{R(t_0)} \equiv \frac{D}{R(t_0)}$$

Redshift

Une source émett tant à la fréquence $\nu_{\mathcal{S}}$ est vue à la fréquence ν_{0}

Redshift

Une source émetttant à la fréquence ν_S est vue à la fréquence ν_0

On considère deux trajectoires de rayon lumineux émis au temps $t_{\rm S}$ et au temps $t_{\rm S}+\frac{1}{\nu_{\rm S}}$ vu au temps t_0 et au temps $t_0+\frac{1}{\nu_0}$

Redshift

Une source émetttant à la fréquence ν_S est vue à la fréquence ν_0

On considère deux trajectoires de rayon lumineux émis au temps $t_{\rm S}$ et au temps $t_{\rm S}+\frac{1}{\nu_{\rm S}}$ vu au temps t_0 et au temps $t_0+\frac{1}{\nu_0}$

La coordonnée comovante $r_{\rm S}$ de la source reste constante soit :

$$S_k^{-1}(r_{\rm S}) = \int_{t_{\rm S}}^{t_0} \frac{cdt}{R(t)} = \int_{t_{\rm S}+1/\nu_{\rm S}}^{t_0+1/\nu_{\rm S}} \frac{cdt}{R(t)}$$

soit:

$$\frac{c}{R(t_0)} \frac{1}{\nu_0} - \frac{c}{R(t_S)} \frac{1}{\nu_S} = 0$$

ce qui donne le redshift z:

$$1+z=\frac{\nu_s}{\nu_0}=\frac{\lambda_0}{\lambda_E}=\frac{R_0}{R_S}$$

soit:

$$\frac{c}{R(t_0)} \frac{1}{\nu_0} - \frac{c}{R(t_S)} \frac{1}{\nu_S} = 0$$

ce qui donne le redshift z:

$$1+z=\frac{\nu_s}{\nu_0}=\frac{\lambda_0}{\lambda_E}=\frac{R_0}{R_S}$$

Interprétation?

soit:

$$\frac{c}{R(t_0)} \frac{1}{\nu_0} - \frac{c}{R(t_S)} \frac{1}{\nu_S} = 0$$

ce qui donne le redshift z:

$$1+z=\frac{\nu_s}{\nu_0}=\frac{\lambda_0}{\lambda_E}=\frac{R_0}{R_S}$$

Interprétation?

Doppler-Fizeau?

soit:

$$\frac{c}{R(t_0)} \frac{1}{\nu_0} - \frac{c}{R(t_S)} \frac{1}{\nu_S} = 0$$

ce qui donne le redshift z:

$$1+z=\frac{\nu_s}{\nu_0}=\frac{\lambda_0}{\lambda_E}=\frac{R_0}{R_S}$$

Interprétation?

Doppler-Fizeau? Gravitationnel?

soit:

$$\frac{c}{R(t_0)} \frac{1}{\nu_0} - \frac{c}{R(t_S)} \frac{1}{\nu_S} = 0$$

ce qui donne le redshift z:

$$1+z=\frac{\nu_s}{\nu_0}=\frac{\lambda_0}{\lambda_E}=\frac{R_0}{R_S}$$

Interprétation?

Doppler-Fizeau? Gravitationnel? (Ce n'est pas pareil!)

Si la "distance" change au cours du temps:

$$v = \frac{\Delta I}{\Delta t}$$

et si:

$$\frac{\Delta \lambda}{\lambda} = \frac{v}{c} \text{ (first order)}$$

c'est un effet Doppler-Fizeau.

La distance propre

Distance obtenue à partir de la mesure faite avec des règles:

$$dl^2 = ds^2 = R(t)^2 \frac{dr^2}{1 - kr^2}$$

ce qui donne la distance propre :

$$D = \int_0^S dl = R(t) S_k^{-1}(r_{\rm S})$$

La distance propre

Distance obtenue à partir de la mesure faite avec des règles:

$$dl^2 = ds^2 = R(t)^2 \frac{dr^2}{1 - kr^2}$$

ce qui donne la distance propre :

$$D = \int_0^S dl = R(t) S_k^{-1}(r_{\rm S})$$

Cette distance est variable au cours du temps:

$$\dot{D} = \dot{R}S_k^{-1}(r_S)$$

Loi de Hubble

La source s'éloigne à une vitesse:

$$v = \frac{\dot{R}}{R}D = HD$$

Loi de Hubble

La source s'éloigne à une vitesse:

$$v = \frac{\dot{R}}{R}D = HD$$

C'est la loi de Hubble.

Nature du Redshift

Le redshift produit par l'expansion:

$$rac{
u_0}{
u_s} = rac{R(t_S)}{R(t_0)} \sim rac{R(t_0) + \dot{R}(t_S - t_0)}{R(t_0)}$$

Nature du Redshift

Le redshift produit par l'expansion:

$$rac{
u_0}{
u_s} = rac{R(t_S)}{R(t_0)} \sim rac{R(t_0) + \dot{R}(t_S - t_0)}{R(t_0)}$$

Donc:

$$\frac{\nu_{S} - \nu_{0}}{\nu_{s}} = \frac{\delta \nu}{\nu} = \frac{\dot{R}}{R} \delta t = H \frac{D}{c} = \frac{v}{c}$$

Nature du Redshift

Le redshift produit par l'expansion:

$$rac{
u_0}{
u_s} = rac{R(t_S)}{R(t_0)} \sim rac{R(t_0) + \dot{R}(t_S - t_0)}{R(t_0)}$$

Donc:

$$\frac{\nu_S - \nu_0}{\nu_S} = \frac{\delta \nu}{\nu} = \frac{\dot{R}}{R} \delta t = H \frac{D}{c} = \frac{v}{c}$$

c'est donc un effet Doppler-Fizeau.

quand r << 1 l'espace peut être considéré comme plat i.e. $R(t_s) \sim R(t_0)$ or

$$z \ll 1$$

quand r << 1 l'espace peut être considéré comme plat i.e. $R(t_s) \sim R(t_0)$ or

$$z \ll 1$$

quand $z \ge 1$ ceci n'est plus vrai.

Une "mesure de distance " nécessite la spécification du dispositif expérimental.

quand r << 1 l'espace peut être considéré comme plat i.e. $R(t_s) \sim R(t_0)$ or

$$z \ll 1$$

quand $z \ge 1$ ceci n'est plus vrai.

Une "mesure de distance " nécessite la spécification du dispositif expérimental.

Differents dispositifs peuvent fournir des réponses différentes.

▶ Distance angulaire : $\theta = \frac{d}{D}$

- ▶ Distance angulaire : $\theta = \frac{d}{D}$
- ▶ Distance lumineuse : $I = \frac{L}{4\pi D^2}$

- ▶ Distance angulaire : $\theta = \frac{d}{D}$
- ▶ Distance lumineuse : $I = \frac{L}{4\pi D^2}$
- ▶ Distance paralaxe: $\pi = \frac{R_T}{D}$

- ▶ Distance angulaire : $\theta = \frac{d}{D}$
- ▶ Distance lumineuse : $I = \frac{L}{4\pi D^2}$
- ▶ Distance paralaxe: $\pi = \frac{R_T}{D}$
- **.**..

Prenons une règle : de taille (transversale) d vue à l'époque t_{S}

Prenons une règle : de taille (transversale) d vue à l'époque $t_{\rm S}$

Observateur: $(r = 0, 0, 0, t = t_0)$

Prenons une règle : de taille (transversale) d vue à l'époque $t_{
m S}$

Observateur: $(r = 0, 0, 0, t = t_0)$

règle : $(r_{\mathrm{S}},0,0,t_{\mathrm{S}})$ and $(r_{\mathrm{S}},\theta,0,t_{\mathrm{S}})$

Prenons une règle : de taille (transversale) d vue à l'époque $t_{\rm S}$

Observateur: $(r = 0, 0, 0, t = t_0)$

règle : $(r_{\mathrm{S}}, 0, 0, t_{\mathrm{S}})$ and $(r_{\mathrm{S}}, \theta, 0, t_{\mathrm{S}})$

Longueur propre:

$$d^2 = ds^2 = R^2(t_S)r^2\theta^2$$

par définition:
$$\theta = \frac{d}{D_{\text{ang}}} = \frac{d}{R(t_S)r}$$
 d'où:

Prenons une règle : de taille (transversale) d vue à l'époque $t_{\rm S}$

Observateur: $(r = 0, 0, 0, t = t_0)$

règle : $(r_{\mathrm{S}}, 0, 0, t_{\mathrm{S}})$ and $(r_{\mathrm{S}}, \theta, 0, t_{\mathrm{S}})$

Longueur propre:

$$d^2 = ds^2 = R^2(t_S)r^2\theta^2$$

par définition: $\theta = \frac{d}{D_{ang}} = \frac{d}{R(t_S)r}$ d'où:

$$D_{\rm ang} = R(t_S)r$$

Télescope de diamètre 2d observe un point source de luminosité L 2θ est l'angle du télescope vu depuis la source

$$d = R(t_0) r \theta$$

I: la luminosité apparente de la source

Télescope de diamètre 2d observe un point source de luminosité L 2θ est l'angle du télescope vu depuis la source

$$d = R(t_0) r \theta$$

I: la luminosité apparente de la source

$$I = L \frac{\pi \theta^2}{4\pi} \frac{1}{1+z} \frac{1}{1+z} \frac{1}{\pi d^2}$$

Télescope de diamètre 2d observe un point source de luminosité L 2θ est l'angle du télescope vu depuis la source

$$d = R(t_0) r \theta$$

1: la luminosité apparente de la source

$$I = L \frac{\pi \theta^2}{4\pi} \frac{1}{1+z} \frac{1}{1+z} \frac{1}{\pi d^2}$$

$$I = \frac{L}{4\pi (R(t_0) \ r)^2} \ \frac{1}{(1+z)^2} = \frac{L}{4\pi \ D_{\text{lum}}^2}$$

On obtient la distance lumineuse:

$$D_{\text{lum}} = R(t_0) r (1+z)$$

= $R(t_S) r (1+z)^2$
= $D_{\text{ang}} (1+z)^2$

On obtient la distance lumineuse:

$$D_{\text{lum}} = R(t_0) r (1+z)$$

$$= R(t_S) r (1+z)^2$$

$$= D_{\text{ang}} (1+z)^2$$

Cette dernière relation est toujours vraie (en RG).

La gravitation

La gravitation

A partir de la RG d'Einstein's

A partir de la RG d'Einstein's

$$R_{ij} - 1/2g_{ij}R = 8\pi GT_{ij}$$

A partir de la RG d'Einstein's

$$R_{ij} - 1/2g_{ij}R = 8\pi GT_{ij}$$

référentiel au repos :

$$T_{ij} = \left[egin{array}{ccc}
ho & & & & \ & P & & \ & & P & \ & & P & \ & & P \end{array}
ight]$$

A partir de la RG d'Einstein's

$$R_{ij} - 1/2g_{ij}R = 8\pi G T_{ij}$$

référentiel au repos :

$$T_{ij} = \left[\begin{array}{ccc} \rho & & & \\ & P & & \\ & & P & \\ & & & P \end{array} \right]$$

▶ Source de la gravitation : $\rho + 3P/c^2$

A partir de la RG d'Einstein's

$$R_{ij} - 1/2g_{ij}R = 8\pi G T_{ij}$$

référentiel au repos :

$$T_{ij} = \left[\begin{array}{ccc} \rho & & & \\ & P & & \\ & & P & \\ & & & P \end{array} \right]$$

- ▶ Source de la gravitation : $\rho + 3P/c^2$
- ▶ Théorème de Birkoff : analogue du théorème de Gauss

A partir de la RG d'Einstein's

$$R_{ij} - 1/2g_{ij}R = 8\pi G T_{ij}$$

référentiel au repos :

$$T_{ij} = \left[\begin{array}{ccc} \rho & & & \\ & P & & \\ & & P & \\ & & & P \end{array} \right]$$

- ▶ Source de la gravitation : $\rho + 3P/c^2$
- ▶ Théorème de Birkoff : analogue du théorème de Gauss

Pour une distribution à symétrie sphérique $\rho(r < R)$ détermine la solution r < R.

Dans une sphère de rayon a

$$\ddot{a}=g$$

Dans une sphère de rayon a

$$\ddot{a} = g$$

Source $\rho + 3P/c^2$:

$$\ddot{a} = -\frac{GM}{a^2} = -\frac{4\pi G}{3} (\rho + 3P/c^2)a \tag{1}$$

Dans une sphère de rayon a

$$\ddot{a} = g$$

Source $\rho + 3P/c^2$:

$$\ddot{a} = -\frac{GM}{a^2} = -\frac{4\pi G}{3} (\rho + 3P/c^2) a \tag{1}$$

Conservation de l'énergie

 E_t Energie totale de la sphère :

$$d(E_t) = d(\rho Vc^2) = -PdV$$

= $c^2(Vd\rho + \rho dV) = -PdV$

ce qui conduit à :

$$\dot{\rho} = -(\rho + P/c^2)\frac{\dot{V}}{V} = -3(\rho + P/c^2)\frac{\dot{a}}{a}$$
 (2)

ce qui conduit à :

$$\dot{\rho} = -(\rho + P/c^2)\frac{\dot{V}}{V} = -3(\rho + P/c^2)\frac{\dot{a}}{a}$$
 (2)

$$\ddot{a} = -\frac{4\pi G}{3}(\rho + 3P/c^2)a$$

ce qui conduit à :

$$\dot{\rho} = -(\rho + P/c^2)\frac{\dot{V}}{V} = -3(\rho + P/c^2)\frac{\dot{a}}{a}$$
 (2)

$$\ddot{a} = -\frac{4\pi G}{3}(\rho + 3P/c^2)a$$

$$\ddot{a} = -\frac{4\pi G}{3}(3\rho + 3P/c^2)a + 2\frac{4\pi G}{3}\rho a$$

ce qui conduit à :

$$\dot{\rho} = -(\rho + P/c^2)\frac{\dot{V}}{V} = -3(\rho + P/c^2)\frac{\dot{a}}{a}$$
 (2)

$$\ddot{a} = -\frac{4\pi G}{3} (\rho + 3P/c^2) a$$

$$\ddot{a} = -\frac{4\pi G}{3} (3\rho + 3P/c^2) a + 2\frac{4\pi G}{3} \rho a$$

$$\ddot{a} = +\frac{4\pi G}{3} \frac{a\dot{\rho}}{\dot{a}} a + 2\frac{4\pi G}{3} \rho a$$

multiplication par à:

$$\ddot{a}\ddot{a} = +\frac{4\pi G}{3}a^2\dot{\rho} + \frac{8\pi G}{3}\rho a\dot{a}$$

multiplication par à:

$$\ddot{a}\ddot{a} = +\frac{4\pi G}{3}a^2\dot{\rho} + \frac{8\pi G}{3}\rho a\dot{a}$$

$$(\dot{a}^2)' = \left(\frac{8\pi G a^2 \rho}{3}\right)'$$

multiplication par à:

$$\dot{a}\ddot{a} = +\frac{4\pi G}{3}a^2\dot{\rho} + \frac{8\pi G}{3}\rho a\dot{a}$$

$$(\dot{a}^2)' = \left(\frac{8\pi G a^2 \rho}{3}\right)'$$

ce qui donne :

$$\dot{a}^2 = \frac{8\pi G a^2 \rho}{3} + cste$$

multiplication par à:

$$\ddot{a}\ddot{a}=+rac{4\pi G}{3}a^2\dot{
ho}+rac{8\pi G}{3}
ho a\dot{a}$$

$$(\dot{a}^2)' = \left(\frac{8\pi G a^2 \rho}{3}\right)'$$

ce qui donne :

$$\dot{a}^2 = \frac{8\pi G a^2 \rho}{3} + cste$$

Pour R(t):

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} - \frac{kc^2}{R^2}$$

Solution \rightarrow nécessite une équation d'état $F(\rho, P) = 0$

Solution o nécessite une équation d'état $F(\rho,P)=0$

Notation :
$$P = w \rho(c = 1)$$

Solution o nécessite une équation d'état $F(\rho, P) = 0$

Notation : $P = w \rho(c = 1)$

La densité ρ s'écrit:

$$\rho = \sum_{i} \int \frac{E_{i}}{c^{2}} f(p_{i}) dp_{i}$$

Solution o nécessite une équation d'état $F(\rho, P) = 0$

Notation : $P = w \rho(c = 1)$

La densité ρ s'écrit:

$$\rho = \sum_{i} \int \frac{E_{i}}{c^{2}} f(p_{i}) dp_{i}$$

la pression P:

$$P = \sum_{i} \int \frac{1}{3} \frac{p_i^2}{E_i} f(p_i) dp_i$$

Deux régimes:

Deux régimes:

ightarrow domination par la matière : p << mc i.e. P=0 $ho = \int m$ et $g \propto \rho$ $\dot{\rho} = -3\rho \dot{a}/a$ ($a \propto R$) donc : $\rho a^3 = \mathrm{cste}$

Deux régimes:

 \rightarrow domination par la matière : $p \ll mc$ i.e. P = 0

$$\rho = \int m \text{ et } g \propto \rho$$
 $\dot{\rho} = -3\rho \dot{a}/a (a \propto R) \text{ donc} :$

$$\rho a^3 = \text{cste}$$

→ Domination de la pression (radiation) :

$$p>>mc$$
 so $\rho=\int p/c...$ et $P=\int 1/3~p~c...$

$$P = \frac{1}{3}\rho c^2$$

$$\dot{\rho} = -4\rho \dot{a}/a \text{ soit}$$
:

$$\rho a^4 = \text{cste}$$

Vers les equations EFL Solutions

Vide: thermodynamique

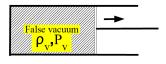
Vide: thermodynamique

Naivement : $\rho_{\nu}=0$ et $P_{\nu}=0...$

Vide: thermodynamique

Naivement : $\rho_{\nu} = 0$ et $P_{\nu} = 0...$

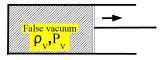
Soit un piston avec un vide interne:



Vide: thermodynamique

Naivement :
$$\rho_{\nu} = 0$$
 et $P_{\nu} = 0...$

Soit un piston avec un vide interne:



Énergie interne totale:

$$E = mc^2 = \rho_v Vc^2$$

Laissons le piston se déplacer ...

Laissons le piston se déplacer ...

$$d(E_t) = d(\rho_v V c^2) = \rho_v c^2 dV = -P_v dV$$

Laissons le piston se déplacer ...

$$d(E_t) = d(\rho_v V c^2) = \rho_v c^2 dV = -P_v dV$$

L'equation d'état du vide:

$$P_{v} = -\rho_{v}c^{2}$$

Laissons le piston se déplacer ...

$$d(E_t) = d(\rho_v V c^2) = \rho_v c^2 dV = -P_v dV$$

L'equation d'état du vide:

$$P_{v} = -\rho_{v}c^{2}$$

On peut ainsi introduire la constante cosmologique :

$$\Lambda = 8\pi G \rho_{\rm v}$$

Vide : milieu invariant de Lorentz

La constante cosmologique se comporte exactement comme un milieu invariant de Lorentz

Vide : milieu invariant de Lorentz

La constante cosmologique se comporte exactement comme un milieu invariant de Lorentz \Rightarrow identification au vide. (Lemaître, 1934).

Vide: milieu invariant de Lorentz

La constante cosmologique se comporte exactement comme un milieu invariant de Lorentz \Rightarrow identification au vide. (Lemaître, 1934).

Transformation de Lorentz: Λ_j^i (i, j = 0, 1, 2, 3). Pour une translation uniforme le long de x(i = 1) à vitesse v:

Vide : milieu invariant de Lorentz

La constante cosmologique se comporte exactement comme un milieu invariant de Lorentz \Rightarrow identification au vide. (Lemaître, 1934).

Transformation de Lorentz: Λ_j^i (i, j = 0, 1, 2, 3). Pour une translation uniforme le long de x(i = 1) à vitesse v:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} \gamma & \gamma v & & & \ \gamma v & \gamma & & & \ & & 1 & & \ & & & 1 \end{aligned} \end{aligned}$$

avec $\gamma = 1/\sqrt{1-v^2}$ (convention c=1).

Vide: milieu invariant de Lorentz

Soit le $T_{\mu\nu}$ d'un fluide parfait (ρ, P)

$$T'_{\mu\nu} = \Lambda^i_\mu \Lambda^j_
u T_{ij}$$

On calcule T_{00} c.-à-d:

$$T'_{00} = \Lambda_0^i \Lambda_0^j T_{ij} = \gamma^2 \rho + \gamma^2 v^2 P$$

or T_{00}' dit être égal à ρ il faut donc :

$$P_{v} = -\rho_{v}c^{2}$$

L'espace-temps est décrit par une métrique de RW

L'espace-temps est décrit par une métrique de RW Equations d'Einstein-Friedmann-Lemaître (EFL) :

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} - \frac{kc^2}{R^2} + \frac{\Lambda}{3}$$

L'espace-temps est décrit par une métrique de RW Equations d'Einstein-Friedmann-Lemaître (EFL) :

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} - \frac{kc^2}{R^2} + \frac{\Lambda}{3}$$

et

$$\dot{\rho} = -3\left(\frac{P}{c^2} + \rho\right)\frac{\dot{R}}{R}$$

L'espace-temps est décrit par une métrique de RW Equations d'Einstein-Friedmann-Lemaître (EFL) :

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi G\rho}{3} - \frac{kc^2}{R^2} + \frac{\Lambda}{3}$$

et

$$\dot{\rho} = -3\left(\frac{P}{c^2} + \rho\right)\frac{\dot{R}}{R}$$

$$2\frac{\ddot{R}}{R} = -\frac{8\pi G}{3}(\rho + 3P/c^2) + \frac{2\Lambda}{3}$$

 $H = \frac{\dot{R}}{R}$, le paramètre de Hubble,

$$H=rac{\dot{R}}{R}$$
, le paramètre de Hubble, $\Omega_{M}=\Omega=rac{8\pi G
ho}{3H^{2}}$ le paramètre de densité,

$$H=rac{R}{R}$$
, le paramètre de Hubble, $\Omega_M=\Omega=rac{8\pi G
ho}{3H^2}$ le paramètre de densité, $q=-rac{\ddot{R}R}{\dot{R}^2}$, le paramètre de déccélération,

 $H=rac{R}{R}$, le paramètre de Hubble, $\Omega_M=\Omega=rac{8\pi G
ho}{3H^2}$ le paramètre de densité, $q=-rac{\ddot{R}R}{R^2}$, le paramètre de déccélération, $\Omega_{\mathrm{vac}}=\Omega_{\lambda}=\lambda=rac{\Lambda}{3H^2}$, la constante cosmologique réduite,

 $H=rac{R}{R}$, le paramètre de Hubble, $\Omega_M=\Omega=rac{8\pi G
ho}{3H^2}$ le paramètre de densité, $q=-rac{\ddot{R}R}{\dot{R}^2}$, le paramètre de déccélération, $\Omega_{
m vac}=\Omega_{\lambda}=\lambda=rac{\Lambda}{3H^2}$, la constante cosmologique réduite, $\Omega_c=-lpha=-rac{kc^2}{H^2R^2}$, le paramètre de courbure.

$$H=rac{R}{R}$$
, le paramètre de Hubble, $\Omega_M=\Omega=rac{8\pi G
ho}{3H^2}$ le paramètre de densité, $q=-rac{\ddot{R}R}{\dot{R}^2}$, le paramètre de déccélération, $\Omega_{\rm vac}=\Omega_{\lambda}=\lambda=rac{\Lambda}{3H^2}$, la constante cosmologique réduite, $\Omega_c=-\alpha=-rac{kc^2}{H^2R^2}$, le paramètre de courbure. Grandeurs indicées $0=$ valeurs actuelles : $\Omega_0,\,q_0,\,\dots$

$$H=rac{\dot{R}}{R}$$
, le paramètre de Hubble, $\Omega_{M}=\Omega=rac{8\pi G
ho}{3H^{2}}$ le paramètre de densité, $q=-rac{\ddot{R}R}{\dot{R}^{2}}$, le paramètre de déccélération, $\Omega_{\mathrm{vac}}=\Omega_{\lambda}=\lambda=rac{\Lambda}{3H^{2}}$, la constante cosmologique réduite, $\Omega_{c}=-\alpha=-rac{kc^{2}}{H^{2}R^{2}}$, le paramètre de courbure. Grandeurs indicées $0=$ valeurs actuelles : $\Omega_{0},\ q_{0},\ \dots$ E.F.L. : $\Omega_{c}+\Omega_{M}+\Omega_{\lambda}=1$

$$\ddot{a} = g = -\frac{GM}{a^2}$$
 and $+ \rho a^3 = \text{cste}$

$$\ddot{a} = g = -\frac{GM}{a^2} \text{ and } + \rho a^3 = \text{cste}$$

d'où:

$$\dot{a}^2 - \frac{8\pi \ G \ \rho \ a^2}{3} = \dot{a}^2 - \frac{2GM}{a} = -k \ c^2$$

$$\ddot{a} = g = -\frac{GM}{a^2}$$
 and $+ \rho a^3 = \text{cste}$

d'où:

$$\dot{a}^2 - \frac{8\pi \ G \ \rho \ a^2}{3} = \dot{a}^2 - \frac{2GM}{a} = -k \ c^2$$

ce qui est exactement l'équation du mouvement d'une particule test dans le champ d'une masse (sphérique) en mécanique Newtonienne!

$$E_c + E_p = cste$$

$$\ddot{a} = g = -\frac{GM}{a^2}$$
 and $+ \rho a^3 = \text{cste}$

d'où:

$$\dot{a}^2 - \frac{8\pi \ G \ \rho \ a^2}{3} = \dot{a}^2 - \frac{2GM}{a} = -k \ c^2$$

ce qui est exactement l'équation du mouvement d'une particule test dans le champ d'une masse (sphérique) en mécanique Newtonienne!

$$E_c + E_p = cste$$

Solutions:

$$\ddot{a} = g = -\frac{GM}{a^2}$$
 and $+ \rho a^3 = \text{cste}$

d'où:

$$\dot{a}^2 - \frac{8\pi \ G \ \rho \ a^2}{3} = \dot{a}^2 - \frac{2GM}{a} = -k \ c^2$$

ce qui est exactement l'équation du mouvement d'une particule test dans le champ d'une masse (sphérique) en mécanique Newtonienne!

$$E_c + E_p = cste$$

Solutions:

▶ k = -1 solution hyperbolique

$$\ddot{a} = g = -\frac{GM}{a^2}$$
 and $+ \rho a^3 = \text{cste}$

d'où:

$$\dot{a}^2 - \frac{8\pi \ G \ \rho \ a^2}{3} = \dot{a}^2 - \frac{2GM}{a} = -k \ c^2$$

ce qui est exactement l'équation du mouvement d'une particule test dans le champ d'une masse (sphérique) en mécanique Newtonienne!

$$E_c + E_p = cste$$

Solutions:

- ▶ k = -1 solution hyperbolique
- k = 0 solution parabolique

$$\ddot{a} = g = -\frac{GM}{a^2}$$
 and $+ \rho a^3 = \text{cste}$

d'où:

$$\dot{a}^2 - \frac{8\pi \ G \ \rho \ a^2}{3} = \dot{a}^2 - \frac{2GM}{a} = -k \ c^2$$

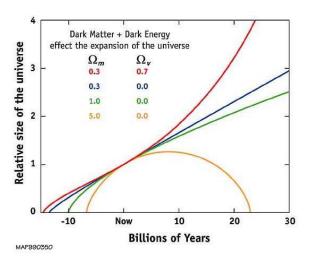
ce qui est exactement l'équation du mouvement d'une particule test dans le champ d'une masse (sphérique) en mécanique Newtonienne!

$$E_c + E_p = cste$$

Solutions:

- ▶ k = -1 solution hyperbolique
- k = 0 solution parabolique
- k = +1 solution (liée) elliptique

Solutions générales



$$\dot{R}^2 = \frac{8\pi \ G \ \rho \ R^2}{3} \text{ and } \rho R^3 = \rho_0 R_0^3$$

$$\dot{R}^2 = \frac{8\pi \ G \ \rho \ R^2}{3} \text{ and } \rho R^3 = \rho_0 R_0^3$$

D'après l'Eq. 1 :

$$\Omega = \frac{8\pi \ G \ \rho}{3 \ H^2} = 1 = \Omega_0$$

d'où la densité critique :

$$\rho_c = \frac{3 H_0^2}{8\pi G}$$

$$\dot{R}^2 = \frac{8\pi \ G \ \rho \ R^2}{3} \text{ and } \rho R^3 = \rho_0 R_0^3$$

D'après l'Eq. 1 :

$$\Omega = \frac{8\pi \ G \ \rho}{3 \ H^2} = 1 = \Omega_0$$

d'où la densité critique :

$$\rho_c = \frac{3 H_0^2}{8\pi G}$$

l'Eq. 2 implique:

$$\dot{R}^2 = \frac{8\pi \ G \ \rho_0 \ R_0^3}{3 \ R} = H_0^2 \frac{R_0^3}{R}$$

Solution:

$$R(t) = R_0 \left(\frac{3}{2}H_0 \ t\right)^{2/3} = R_0 (t/t_0)^{2/3}$$

avec:

$$t_0 = \frac{2}{3} H_0^{-1} = \frac{1}{\sqrt{6\pi G \rho_c}}$$

Solution:

$$R(t) = R_0 \left(\frac{3}{2}H_0 \ t\right)^{2/3} = R_0 (t/t_0)^{2/3}$$

avec:

$$t_0 = \frac{2}{3} H_0^{-1} = \frac{1}{\sqrt{6\pi G \rho_c}}$$

La solution passe par 0 c.-à-d. a une singularité dans le passé (fini)...

$$2\frac{\ddot{R}}{R} = -\frac{8 \pi G}{3} (\rho + 3P/c^2)$$

et:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8 \pi G \rho}{3} - \frac{k c^2}{R^2}$$

$$2\frac{\ddot{R}}{R} = -\frac{8 \pi G}{3} (\rho + 3P/c^2)$$

et:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8 \pi G \rho}{3} - \frac{k c^2}{R^2}$$

soit : $(\rho + 3P/c^2) > 0$ R passe par 0 (dans le passé) en un temps fini t_0 .

$$2\frac{\ddot{R}}{R} = -\frac{8 \pi G}{3} (\rho + 3P/c^2)$$

et:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8 \pi G \rho}{3} - \frac{k c^2}{R^2}$$

soit : $(\rho + 3P/c^2) > 0$ R passe par 0 (dans le passé) en un temps fini t_0 .

Il y a un théorème général.

$$2\frac{\ddot{R}}{R} = -\frac{8 \pi G}{3} (\rho + 3P/c^2)$$

et:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8 \pi G \rho}{3} - \frac{k c^2}{R^2}$$

soit : $(\rho + 3P/c^2) > 0$ R passe par 0 (dans le passé) en un temps fini t_0 .

Il y a un théorème général.

Quand
$$R o 0$$
 on a $\left(\frac{\dot{R}}{R}\right)^2 \sim \frac{8 \; \pi \; G \;
ho}{3}$ i.e. $\Omega \sim 1$

L'équation précédente $-\Omega_c=\Omega_0-1$ so :

$$H^2 = H_0^2 [\Omega_0 (1+z)^3 + (1-\Omega_0)(1+z)^2]$$

L'équation précédente $-\Omega_{c}=\Omega_{0}-1$ so :

$$H^2 = H_0^2 [\Omega_0 (1+z)^3 + (1-\Omega_0)(1+z)^2]$$

soit:

$$H^2 = H_0^2 (1+z)^2 (1+\Omega_0 z)$$

L'équation précédente $-\Omega_c=\Omega_0-1$ so :

$$H^2 = H_0^2 [\Omega_0 (1+z)^3 + (1-\Omega_0)(1+z)^2]$$

soit:

$$H^2 = H_0^2 (1+z)^2 (1+\Omega_0 z)$$

et:

$$\Omega(z) = \frac{8\pi \ G \ \rho}{3H^2} = \frac{8\pi \ G \ \rho_0}{3H_0^2} \frac{(1+z)^3}{(1+z)^2(1+\Omega_0 z)}$$

L'équation précédente $-\Omega_c=\Omega_0-1$ so :

$$H^2 = H_0^2 [\Omega_0 (1+z)^3 + (1-\Omega_0)(1+z)^2]$$

soit:

$$H^2 = H_0^2 (1+z)^2 (1+\Omega_0 z)$$

et:

$$\Omega(z) = \frac{8\pi \ G \ \rho}{3H^2} = \frac{8\pi \ G \ \rho_0}{3H_0^2} \frac{(1+z)^3}{(1+z)^2(1+\Omega_0 z)}$$

donc:

$$\Omega(z) = \Omega_0 \frac{(1+z)}{(1+\Omega_0 z)}$$

Relation de Mattig $\Lambda = 0$

le long d'un rayon lumineux :

$$\frac{dr^2}{1 - kr^2} = \frac{c^2 dt^2}{R^2(t)} = \frac{c^2 dR^2}{R^2(t)\dot{R}^2(t)}$$

Relation de Mattig $\Lambda = 0$

le long d'un rayon lumineux :

$$\frac{dr^2}{1 - kr^2} = \frac{c^2 dt^2}{R^2(t)} = \frac{c^2 dR^2}{R^2(t)\dot{R}^2(t)}$$

On en déduit $v = \frac{\alpha_0}{\Omega_0 R_0} R$ (...):

$$R_0 \ r = \frac{c}{H_0} \ \frac{2}{\Omega_0^2} \ \frac{\Omega_0(1+z) + 2 - 2\Omega_0 - (2-\Omega_0)\sqrt{1+\Omega_0 \ z}}{1+z}$$

Relation de Mattig $\Lambda = 0$

le long d'un rayon lumineux :

$$\frac{dr^2}{1 - kr^2} = \frac{c^2 dt^2}{R^2(t)} = \frac{c^2 dR^2}{R^2(t)\dot{R}^2(t)}$$

On en déduit $v = \frac{\alpha_0}{\Omega_0 R_0} R$ (...):

$$R_0 \ r = \frac{c}{H_0} \ \frac{2}{\Omega_0^2} \ \frac{\Omega_0(1+z) + 2 - 2\Omega_0 - (2-\Omega_0)\sqrt{1+\Omega_0 \ z}}{1+z}$$

quand
$$z << 1$$
 R_0 $r \sim \frac{c}{H_0}z$ quand $z >> 1$ R_0 $r \sim \frac{c}{H_0}\frac{2}{\Omega_0}$

$$\begin{array}{rcl} \dot{R}^2 & = & \frac{8\pi \ G \ \rho R^2}{3} - kc^2 \\ & = & H_0^2 \Omega_0 \ R_0^2 \ (1+z) + (1-\Omega_0) \ H_0^2 \ R_0^2 \end{array}$$

$$\begin{array}{rcl} \dot{R}^2 & = & \frac{8\pi \ G \ \rho R^2}{3} - kc^2 \\ & = & H_0^2 \Omega_0 \ R_0^2 \ (1+z) + (1-\Omega_0) \ H_0^2 \ R_0^2 \\ \\ & \text{donc quand } 1+z >> \frac{1-\Omega_0}{\Omega_0} \ \text{on a} : \ R \propto t^{2/3} \\ \\ & \text{alors que } 1+z << \frac{1-\Omega_0}{\Omega_0} \ \dot{R} \sim \textit{cste} \ \text{on a} \ R \propto t \end{array}$$

$$\dot{R}^2 = \frac{8\pi G \rho R^2}{3} - kc^2$$

$$= H_0^2 \Omega_0 R_0^2 (1+z) + (1-\Omega_0) H_0^2 R_0^2$$

donc quand $1+z>>\frac{1-\Omega_0}{\Omega_0}$ on a : $R\propto t^{2/3}$ alors que $1+z<<\frac{1-\Omega_0}{\Omega_0}$ $\dot{R}\sim cste$ on a $R\propto t$ R(t) peut être développée:

$$H_0 \ t = rac{\Omega_0}{2(1-\Omega_0)^{3/2}} (\sinh(\psi) - \psi)$$
 $rac{1}{1+z} = rac{R(t)}{R_0} = rac{\Omega_0}{2(1-\Omega_0)} (\cosh(\psi) - 1)$

Ce qui permet d'exprimer H_0 t(z) de façon analytique.

L'expression:

$$\dot{R}^2 = H_0^2 \Omega_0 \ R_0^2 \ (1+z) + (1-\Omega_0) \ H_0^2 \ R_0^2$$

permet de trouver R_m avec $\dot{R} = 0$

$$R_m = R_0 \; \frac{\Omega_0}{\Omega_0 - 1}$$

L'expression:

$$\dot{R}^2 = H_0^2 \Omega_0 \ R_0^2 \ (1+z) + (1-\Omega_0) \ H_0^2 \ R_0^2$$

permet de trouver R_m avec $\dot{R} = 0$

$$R_m = R_0 \; \frac{\Omega_0}{\Omega_0 - 1}$$

R(t) peut aussi s'exprimer sous forme paramétrique:

$$H_0 \ t = rac{\Omega_0}{2(\Omega_0 - 1)^{3/2}} (\phi - \sin(\phi))$$
 $rac{1}{1+z} = rac{R(t)}{R_0} = rac{\Omega_0}{2(\Omega_0 - 1)} (1 - \cos(\phi))$

Au maximum:

$$R_m = c \frac{2 t_m}{\pi}$$
 $\rho_m = \frac{3\pi}{32 G t_m^2}$
 $t_m = \frac{1}{H_0} \frac{\Omega_0}{(\Omega_0 - 1)^{3/2}} \pi$

(utile en formation des structures)

$$2\ddot{R} = -\frac{8 \pi G}{3} (\rho + \frac{3P}{c^2}) R + \frac{2\Lambda}{3} R$$

Si $\Lambda < 0$ force attractive

Si $\Lambda>0$ force répulsive, dans ce cas R(t) peut ne pas avoir de singularité R=0.

$$2\ddot{R} = -\frac{8 \pi G}{3} (\rho + \frac{3P}{c^2}) R + \frac{2\Lambda}{3} R$$

Si $\Lambda < 0$ force attractive

Si $\Lambda > 0$ force répulsive, dans ce cas R(t) peut ne pas avoir de singularité R = 0.

Cas
$$P = 0$$

$$2\ddot{R} = H_0^2 R_0 \left[\frac{2 \lambda_0}{(1+z)} - \Omega_0 (1+z)^2 \right]$$

$$\dot{R}^2 = H_0^2 R_0^2 [rac{\lambda_0}{(1+z)^2} + (1-\Omega_0 - \lambda_0) + \Omega_0 (1+z)]$$

$$2\ddot{R} = -\frac{8 \pi G}{3} (\rho + \frac{3P}{c^2}) R + \frac{2\Lambda}{3} R$$

Si $\Lambda < 0$ force attractive

Si $\Lambda > 0$ force répulsive, dans ce cas R(t) peut ne pas avoir de singularité R = 0.

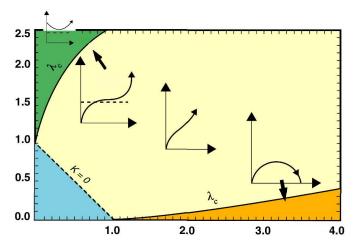
Cas
$$P = 0$$

$$2\ddot{R} = H_0^2 R_0 \left[\frac{2 \lambda_0}{(1+z)} - \Omega_0 (1+z)^2 \right]$$

$$\dot{R}^2 = H_0^2 R_0^2 \left[\frac{\lambda_0}{(1+z)^2} + (1 - \Omega_0 - \lambda_0) + \Omega_0 (1+z) \right]$$

posons u = 1 + z on obtient :

$$\dot{R}^2 \propto rac{\lambda_0}{u^2} + (1 - \Omega_0 - \lambda_0) + \Omega_0 \ u = f(u)$$



Les relations R_0r , t(z), ... ne sont plus analytiques.

Les relations R_0r , t(z), ... ne sont plus analytiques.

$$\dot{R}^{2} = \frac{8 \pi G \rho R^{2}}{3} - kc^{2} + \frac{\Lambda R^{2}}{3}$$

$$= H_{0}^{2} R_{0}^{2} \left[\frac{\Omega_{\Lambda}}{(1+z)^{2}} - \Omega_{c} + \Omega_{0} (1+z) \right]$$

Les relations R_0r , t(z), ... ne sont plus analytiques.

$$\dot{R}^{2} = \frac{8 \pi G \rho R^{2}}{3} - kc^{2} + \frac{\Lambda R^{2}}{3}$$

$$= H_{0}^{2} R_{0}^{2} \left[\frac{\Omega_{\Lambda}}{(1+z)^{2}} - \Omega_{c} + \Omega_{0} (1+z) \right]$$

Relation de Mattig:

$$S_k^{-1}(r) = \int_{t(z)}^{t_0} \frac{c \ dt}{R(t)} = |\Omega_c|^{1/2} \int_1^{1+z} \frac{d \ u}{(\Omega_0 u^3 - \Omega_c u^2 + \Omega_\Lambda)^{1/2}}$$

Les relations R_0r , t(z), ... ne sont plus analytiques.

$$\dot{R}^{2} = \frac{8 \pi G \rho R^{2}}{3} - kc^{2} + \frac{\Lambda R^{2}}{3}$$

$$= H_{0}^{2} R_{0}^{2} \left[\frac{\Omega_{\Lambda}}{(1+z)^{2}} - \Omega_{c} + \Omega_{0} (1+z) \right]$$

Relation de Mattig:

$$S_k^{-1}(r) = \int_{t(z)}^{t_0} \frac{c \ dt}{R(t)} = |\Omega_c|^{1/2} \int_1^{1+z} \frac{d \ u}{(\Omega_0 u^3 - \Omega_c u^2 + \Omega_\Lambda)^{1/2}}$$

Âge:

Les relations R_0r , t(z), ... ne sont plus analytiques.

$$\dot{R}^{2} = \frac{8 \pi G \rho R^{2}}{3} - kc^{2} + \frac{\Lambda R^{2}}{3}$$

$$= H_{0}^{2} R_{0}^{2} \left[\frac{\Omega_{\Lambda}}{(1+z)^{2}} - \Omega_{c} + \Omega_{0} (1+z) \right]$$

Relation de Mattig:

$$S_k^{-1}(r) = \int_{t(z)}^{t_0} \frac{c \ dt}{R(t)} = |\Omega_c|^{1/2} \int_1^{1+z} \frac{d \ u}{(\Omega_0 u^3 - \Omega_c u^2 + \Omega_\Lambda)^{1/2}}$$

Âge:

$$t_0 - t(z) = \int_1^{1+z} rac{1}{H_0} rac{d\ u}{u(\Omega_0 u^3 - \Omega_c u^2 + \Omega_\Lambda)^{1/2}}$$

Vers les equations EFL Solutions

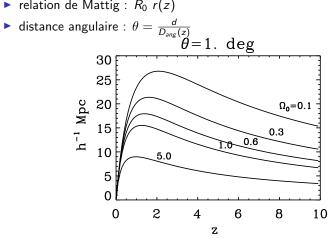
Solution domination de la matière : cas $\Lambda \neq 0$

relation de Mattig : $R_0 r(z)$

relation de Mattig : $R_0 r(z)$

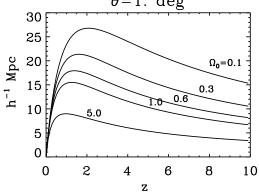
• distance angulaire : $\theta = \frac{d}{D_{ang}(z)}$

relation de Mattig : $R_0 r(z)$



relation de Mattig : $R_0 r(z)$

• distance angulaire : $\theta = \frac{d}{D_{ang}(z)}$ $\theta = 1$. deg



 \rightarrow minimum à z puis augmente!

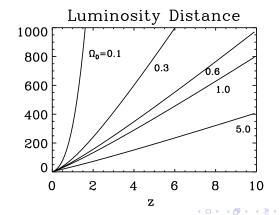
Vers les equations EFL Solutions

Solution domination de la matière : cas $\Lambda \neq 0$

relation de Mattig : $R_0 r(z)$

- relation de Mattig : $R_0 r(z)$
- distance lumineuse :

- relation de Mattig : $R_0 r(z)$
- distance lumineuse :



▶ Temps écoulé (Look back time) : $H_0(t_0 - t(z))$

- ▶ Temps écoulé (Look back time) : $H_0(t_0 t(z))$
- \rightarrow at $z \sim 1$ l'univers est notablement plus jeune:

$$\Omega \sim 0.$$
 $\Omega_{\Lambda} = 0.$ $z = 1 \leftrightarrow t_1 \sim 0.5$ t_0
 $\Omega = 1.$ $\Omega_{\Lambda} = 0.$ $z = 1 \leftrightarrow t_1 \sim 0.35$ t_0
 $\Omega = 0.3$ $\Omega_{\Lambda} = 0.7$ $z = 1 \leftrightarrow t_1 \sim 0.35$ t_0

- ▶ Temps écoulé (Look back time) : $H_0(t_0 t(z))$
- \rightarrow at $z \sim 1$ l'univers est notablement plus jeune:

$$\begin{split} \Omega \sim 0. \quad & \Omega_{\Lambda} = 0. \\ \Omega = 1. \quad & \Omega_{\Lambda} = 0. \\ \Omega = 0.3 \quad & \Omega_{\Lambda} = 0.7 \end{split} \qquad \begin{aligned} z &= 1 \leftrightarrow t_1 \sim 0.5 \quad t_0 \\ z &= 1 \leftrightarrow t_1 \sim 0.35 \quad t_0 \\ z &= 1 \leftrightarrow t_1 \sim 0.35 \quad t_0 \end{aligned}$$

Les modèles avec $(\Omega, \Omega_{\Lambda} > 0)$ sont plus âgés $(\Omega, \Omega_{\Lambda} = 0)$, la différence est importante uniquement quand $\Omega_{\Lambda} \sim \lambda_c$.

- ▶ Temps écoulé (Look back time) : $H_0(t_0 t(z))$
- \rightarrow at $z \sim 1$ l'univers est notablement plus jeune:

$$\Omega \sim 0.$$
 $\Omega_{\Lambda} = 0.$ $z = 1 \leftrightarrow t_1 \sim 0.5$ t_0
 $\Omega = 1.$ $\Omega_{\Lambda} = 0.$ $z = 1 \leftrightarrow t_1 \sim 0.35$ t_0
 $\Omega = 0.3$ $\Omega_{\Lambda} = 0.7$ $z = 1 \leftrightarrow t_1 \sim 0.35$ t_0

Les modèles avec $(\Omega, \Omega_{\Lambda} > 0)$ sont plus âgés $(\Omega, \Omega_{\Lambda} = 0)$, la différence est importante uniquement quand $\Omega_{\Lambda} \sim \lambda_{c}$.

Calculateur Ned Wright:

http://www.astro.ucla.edu/wright/CosmoCalc.html

$$P = \frac{1}{3}\rho_{\gamma} c^2$$
 and $\rho_{\gamma} R^4 = \text{cste}$

$$P = \frac{1}{3}\rho_{\gamma} c^2$$
 and $\rho_{\gamma} R^4 = \text{cste}$

E.F.L. Equations:

$$\left(\frac{\dot{R}}{R}\right)^{2} = \frac{8 \pi G}{3} (\rho_{\gamma} + \rho_{m}) - \frac{kc^{2}}{R^{2}} + \frac{\Lambda}{3}$$

$$\propto \frac{1}{R^{4}} \frac{1}{R^{3}} \frac{1}{R^{2}} \text{ cste}$$

$$P = \frac{1}{3}\rho_{\gamma} c^2$$
 and $\rho_{\gamma} R^4 = \text{cste}$

E.F.L. Equations:

$$\left(\frac{\dot{R}}{R}\right)^{2} = \frac{8 \pi G}{3} (\rho_{\gamma} + \rho_{m}) - \frac{kc^{2}}{R^{2}} + \frac{\Lambda}{3}$$

$$\propto \frac{1}{R^{4}} \frac{1}{R^{3}} \frac{1}{R^{2}} \text{ cste}$$

ightarrow Le terme de radiation est dominant à grand redshift: $\dot{R}=\frac{\mathrm{cste}}{R}$

$$P = \frac{1}{3}\rho_{\gamma} c^2$$
 and $\rho_{\gamma} R^4 = \text{cste}$

E.F.L. Equations:

$$\left(\frac{\dot{R}}{R}\right)^{2} = \frac{8 \pi G}{3} (\rho_{\gamma} + \rho_{m}) - \frac{kc^{2}}{R^{2}} + \frac{\Lambda}{3}$$

$$\propto \frac{1}{R^{4}} \frac{1}{R^{3}} \frac{1}{R^{2}} \text{ cste}$$

ightarrow Le terme de radiation est dominant à grand redshift: $\dot{R} = \frac{\text{cste}}{R}$ Solution:

$$R = R_1 \left(\frac{t}{\tau}\right)^{1/2}$$
 with $\tau^2 = \frac{3}{32 \pi G \rho_1}$